Cooperation between constitutively activated c-Kit signaling and leukemogenic transcription factors in the determination of the leukemic phenotype in murine hematopoietic stem cells.
نویسندگان
چکیده
Acute myeloid leukemia (AML) is caused by the cooperation between class I, mostly mutated receptor tyrosine kinases (RTK), and class II oncoproteins, chimeric transcription factors derived from chromosomal translocations. The blasts of 80-90% of AML-patients are positive for the RTK c-Kit. In about 50% of the 'core binding factor' (CBF)-AMLs, c-Kit harbors additional gain-of-function mutations, whereas the t(15;17)-positive AML-M3 (100% c-Kit positive) presents virtually no c-Kit mutations. In all c-Kit-positive AMLs, c-Kit signaling is activated. Here, we investigated the role of c-Kit in the determination of the leukemic phenotype in a model of CBF-AML and AML-M3. We studied the role of aberrant c-Kit signaling on normal and leukemic murine stem cells by RNA interference, the c-Kit-inhibitor Imatinib and a constitutively-activated c-Kit mutant in well-established stem cell assays. Effects of the AML-M3-associated PML/RARalpha and the AML-1/ETO as a model for CBF-AML on c-Kit signaling were investigated in trans-activation assays on the Kit promoter. The contribution of activated c-Kit signaling to PML/RARalpha- and AML-1/ETO-induced leukemogenesis was investigated in a murine transduction/transplantation leukemia model. We report that: i) the inhibition of c-Kit impaired the stem cell capacity of PML/RARalpha- and AML-1/ETO-positive HSC; ii) PML/RARalpha was able to activate the c-Kit promoter; iii) constitutively-activated c-Kit increased the stem cell capacity of HSC; and iv) constitutively-activated c-Kit increased the leukemogenic potential of PML/RARalpha- and AML-1/ETO-positive HSC. Our data provide evidence that c-Kit does not have to be mutated to contribute to the determination of the leukemic phenotype in AML.
منابع مشابه
STAT3 as a Key Factor in Tumor Microenvironment and Cancer Stem Cell
Background Recent studies revealed that tumor-associated macrophages (TAMs) play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. Signal transducer and activator of transcription 3 (STAT3), which is a point of convergence for numerous oncogenic signalling pathways, is constitutively activ...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملبررسی وضعیت متیلاسیون در پروموتور ژنهای vHL، Runx3 و Ecad و بیان این ژنها در سلولهای CD34+ خون بند ناف
Background and Objective: Specific differentiation processes to various cell lineages are closely associated with factors such as transcription factors, tumor suppressor elements and internal signaling pathways including vHL, Ecad, and Runx3. Epigenetics is an effective control mechanism of these factors, including several mechanisms such as methylation and acetylation. The main objective of th...
متن کاملExpression Profile of Wnt Molecules in Leukemic Cells from Iranian Patients with Acute Myeloblastic Leukemia
Background: Wnt molecules play a key role in growth, proliferation and development of some embryonic and adult organs as well as hematopoietic stem cells. Wnt signaling pathways are aberrantly activated in many tumor types, including solid tumors and hematologic malignancies. Objective: To investigate the expression profile of a large number of Wnt genes in leukemic cells from Iranian patients ...
متن کاملConstitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice.
Human cancers, including acute myeloid leukemia (AML), commonly display constitutive phosphoinositide 3-kinase (PI3K) AKT signaling. However, the exact role of AKT activation in leukemia and its effects on hematopoietic stem cells (HSCs) are poorly understood. Several members of the PI3K pathway, phosphatase and tensin homolog (Pten), the forkhead box, subgroup O (FOXO) transcription factors, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 34 6 شماره
صفحات -
تاریخ انتشار 2009